Lagrange Multipliers 2

This is a follow on sheet to Lagrange Multipliers 1 and as promised, in this sheet we will look at an example in which the Lagrange multiplier λ has a concrete meaning and this will enable us to find the answer to a related optimization problem without having to go through the whole process of solving the Lagrange equations again.

Cobb-Douglas Production Functions

Let q denote the quantity produced of a good. In general this will depend on the amount of capital and labour employed in the production. As a first approximation, we will assume that

$$
q=f(K, L),
$$

where K denotes capital and L denotes labour.
A Cobb-Douglas production function relates the quantities q, K, and L in the following way:

$$
q=c K^{\alpha} L^{\beta}
$$

where α, β and c are constants and α and β are such that $0<\alpha<1$ and $0<\beta<1$.

Example

Consider the Cobb-Douglas production function

$$
q=30 x^{2 / 3} y^{3 / 10},
$$

where x represents the number of units of capital and y represents the number of units of labour. Suppose that a firm's unit capital and labour costs are $€ 5$ and $€ 6$ respectively.

1. Find the values of x and y that maximise output if the total input costs are fixed at $€ 7250$.
2. Find the new maximum output if the input costs are increased to $€ 7300$.

Solution

1. We have to maximize $q=30 x^{\frac{2}{3}} y^{\frac{3}{10}}$ subject to $5 x+6 y=7250$.

We let our constraint equation be $g(x)=5 x+6 y-7250=0$.

Since $\nabla g=(5,6) \neq(0,0)$, there exists a $\lambda \in \mathbb{R}$ such that $\nabla q=\lambda \nabla g$.

We need to solve $\nabla q=\lambda \nabla g$ and $g=0$. Now

$$
\nabla q=\left(20 x^{-\frac{1}{3}} y^{\frac{3}{10}}, 9 x^{\frac{2}{3}} y^{-\frac{7}{10}}\right)=\left(\frac{20 y^{\frac{3}{10}}}{x^{\frac{1}{3}}}, \frac{9 x^{\frac{2}{3}}}{y^{\frac{7}{10}}}\right)=\lambda(5,6) .
$$

Thus

$$
\frac{20 y^{\frac{3}{10}}}{x^{\frac{1}{3}}}=5 \lambda \quad \text { and } \quad \frac{9 x^{\frac{2}{3}}}{y^{\frac{7}{10}}}=6 \lambda .
$$

Hence

$$
\lambda=\frac{4 y^{\frac{3}{10}}}{x^{\frac{1}{3}}}=\frac{3 x^{\frac{2}{3}}}{2 y^{\frac{7}{10}}} \Longrightarrow 8 y=3 x \quad \Longrightarrow \quad y=\frac{3}{8} x .
$$

Substituting this in the constraint equation, we obtain

$$
5 x+6 \cdot \frac{3}{8} x=7250 \quad \Longrightarrow \quad \frac{29}{4} x=7250 \quad \Longrightarrow \quad x=1000 \quad \text { and then } \quad y=375 .
$$

We now check the value of q at $(1000,375)$ and also at the endpoints of the constraint line $5 x+6 y=7250$ to determine where the maximum occurs. Since we are only interested in non-negative values of x and y, the endpoints of the constraint line $5 x+6 y=7250$ lie where where it cuts the x and y axes, that is at $(1450,0)$ and $\left(0, \frac{3625}{3}\right)$.

Now

$$
q(1450,0)=q\left(0, \frac{3625}{3}\right)=0 \quad \text { and } \quad q(1000,375) \simeq 17755 .
$$

Thus the maximum is indeed attained at $x=1000, y=375$.
2. We will use the fact that if the input costs are increased by $€ 1$ then the maximum output is increased by the Lagrange multiplier λ, which in this context is called The Marginal Productivity of Money.

So in this case the marginal productivity of money is

$$
\lambda=\frac{4(375)^{\frac{3}{10}}}{(1000)^{\frac{1}{3}}} \simeq 2.37 .
$$

Since we are increasing the input costs by $€ 50$, the new maximum output is the old maximum output plus 50λ, so it is

$$
q(1000,375)+50 \lambda \simeq 17873 .
$$

